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resentation, and Xl,X2 when we use it as a lower representation, we have
contravariant and covariant components of a vector. The representation
of a tensor appears as a multilinear form the variables of which are these
components of vectors; we get different coefficients for a form representing
a given tensor depending on whether we use co- or contravariant com-
ponents for the vectors; these coefficients are contra- or covariant or mixed
components of tensors. The absolute differentiation arises out of the
question: given a representation of a tensorfield to find the representation
of its differential. The gij are a representation of the simple tensor
E(A, xA,YA) = XA.YA and the relations (12) account for all the rules for pass-
ing from covariant to contravariant components, etc. The tensor e itself is
a most innocent thing: it has the same properties in all points-it is the
same tensor indeed in all points, in accordance with which its differential
is zero. The important part played by its representation gij in the usual
theory is based on the fact that the properties of the surface are involved
in the method of representation.
The question arises now whether there can be devised other representa-

tions which do not introduce these complications.
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12. The form (112) .-This form, written symbolically as (ax)2(br)(13t)
where t, r are digredient binary variables and x is a point in S2, has 2.2.6-
1-2.3-8 = 9 absolute projective constants. The locus of points x for which
the bilinear form in t, T factors is the quartic curve C4, (ax)2(a1x)2(bbO-
(i313') = 0. For fixed X and variable t the pencil of conics determined by
the form has four base-points on C4 which form a quadruple PT; similarly
for fixed t and variable T there is defined on C4 a quadruple q1. The quad-
ruples pT form a linear series g9 on C4; the quadruples q1 a series h1; and these
series are residual with respect to each other. Conversely a quadruple
on a general quartic C4 determines its linear series, its residual series of
quadruples, and thereby projectively determines the original form. If
for given t, r the conic (ax)2(bT) (,t) = 0 has a double point x then, accord-
ing to Wirtinger,7 the locus of such points x, the vertices of the diagonal
triangles of either system of co-residual quadruples, is a plane sextic of
genus 4 whose special canonical series are determined by (aa'a")2 (br)-
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(b'r)(b"r)(t)('t)("t) = 0. Wirtinger obtains the equation of this
sextic as the discriminant of the conic (ax) (ax,) (a'x) (a'xi) (bb') ( 0')=0
in variables xl.

13. The form (1i2) as the equivalent of a Steiner surface and a quadric.-
Proceeding from the results above we observe that the conics defined'
by the form (112) lie in a web which can be exhibited more symmetrically
by replacing the bilinear combinations of t,r by the coordinates of a point
y in Ss. The form then becomes (aX)2(ay) = 0. To a point x of S2 there
corresponds a plane in S3 which, as x runs over its S2, envelops a Steiner
quartic envelope whose reciprocal point locus is a Steiner four-nodal cubic
surface. The effect of replacing the coordinates y by t,r is to introduce
into the S3 a quadric I with generators t,r. Then I cuts the Steiner cubic
surface in a point sextic of genus 4. Moreover I has in common with the
Steiner quartic envelope an octavic locus of planes of genus 3 and the
tetrads of planes of this locus which contain the generators t,r mark on the
locus of genus 3 the two residual series of coresidual quadruples. From
these considerations one may show that the projective peculiarity of the
birationally general Wirtinger sextic, W, of genus 4 is that its six nodes are
the vertices of a four line. The pencil of conics on this four line is the pencil
apolar to the original web. When the plane is mapped by cubic curves
on the six vertices it becomes a four-nodal cubic surface and the W-sextic
maps mito a general space sextic of genus 4 on a quadric I, while the'quartic
curve C4 maps into a curve of order 12 on the Steiner cubic surface along
which the tangent planes of the surface form the complete octavic inter-
section of the Steiner envelope and I. The quadric (aa'u) (aa'v) (ay) (a'y)
= 0 meets the space sextic in the 12 points which are the maps of the
points in which the lines u, v of the plane meet W whence (aa'u)2(ay)-
(a'y) = 0 is, for variable u, a system of contact quadrics of the space sex-
tic. Since each of these is associated' with one of the 255 proper half
periods of the allied theta functions of genus 4 we have the beautiful
theorem :-On the general space sextic of genus 4 there are precisely 255 four-
nodal cubic surfaces each associated with one of the half periods of the corre-
sponding theta functions.

If u is one of the 28 double tangents of CA the contact quadric (aa'u)n-
(ay) (a'y) 0 is a contact cone of the space sextic which with the quadric
I lies in a pencil of which one member is a pair of tritangent planes. The
28 pencils of this sort give rise to the so-called Steiner complex12 of 28
pairs of tritangent planes. With respect to each of these 255 Steiner
complexes the following theorems may be proved. (a) The 28 pairs of
tritangent planes of a space sextic of genus 4 which form a Steiner complex
are pairs of a Cremona involution in space with the tropes of the Steiner
quartic envelope as F-planes. The 28 lines in which the pairs of planes
meet are lines of a cubic complex.
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The analogous theorem for the double tangents of a plane quartic is
that the six pairs of double tangents of a Steiner complex meet.in six points
on a conic.
The nodal tetrahedron of the Steiner cubic surface has edges on the

surface and therefore bisecant to the space sextic. Given a space sextic
and such a bisecant tetrahedron the cubic surface can be reconstructed
whence (b) For a space sextic of genus 4 there are 255 tetrahedra whose
edges are bisecants of the curve. The 28 pairs of planes of a Steiner com-
plex cut al edge of the nodal tetrahedron of the allied Steiner cubic in
pairs of points of an involution determined by the pair of nodes on that
edge and by the pair of crossings of the sextic on that edge.
The Wirtinger scheme in the plane is determined by the general sextic

surface with four-fold points and a plane section. For the cubic Cre-
mona involution with F-points at the four nodes of a Steiner cubic trans-
forms the Steiner cubic into a plane and the quadric I into such a sextic
surface.

If C1, C2 are two Steiner cubic surfaces on the space sextic then C1 +
kC2 = rI. Hence CO and C2 cut the plane 7r in the same cubic curve Cu2.
Moreover on C12 in ir the nodal tetrahedra of Ci and C2 cut out two in-
scribed four lines of C12. Two cases are possible according as these two
four lines in C12 correspond to the same or to different half periods on the
elliptic cubic C,2. Either of these cases ccn occur. For given the plane,
the cubic curve, and two inscribed four lines belonging to the same or
to different systems, two Steiner cubic surfaces can be found, each in
co 4 ways, with this same plane section and given four lines. These two
surfaces meet further in a space sextic of genus 4.
Two half periods of the space sextic associated with the surfaces Cl, C2

determine a third associated with a surface C3 in either the syzygetic or
the azygetic way. Two cases are possible.

Either C2 + k23C3 = 7I2J, or k2C2 + k3C3 = WI,
C3 + k31C1 = 7r31I, 13C3 + l1C0 = 7rI,
C, + k12C2 = 71I; mlCl + m2C2 = mI.

In the first case the three surfaces are not in a pencil; in the second case
they are. If the first case occurs the two inscribed four lines must belong
to the same half period of C23 on r23. Otherwise on C23 there would be
two distinct half periods isolated but not the third-a lack of symmetry
not to be expected. Presumably then the second case occurs when on the
plane 7r the nodal tetrahedra of C0, C2, C0 meet ir in inscribed four lines,
one from each of the three systems. With respect to the first case we may
prove the theorem: (c) Given two tetrahedra in general position T1, T2,
a plane X can be chosen in four ways such that the edges of T1, T2 meet
7r in the two sets of, 6 vertices of two four lines inscribed in a cubic curve
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C12 and belonging to the same half period on C12. There are two Steiner
cubic surfaces Cl, C2 with nodal tetrahedra Ti, T2 respectively and the
plane section C12 such that k,C, + k2C2 = 7rI. The plane ir is the plane
of one of the four conics in the pencil of quadric envelopes which touch the
8 planes of T, and T2.

14. Particular cases of W.-There are four particular cases o-f interest
in connection with the canonical sextic W each characterized by one con-
dition. When one half period or discriminant factor of the sextic is iso-
lated the others are of two kinds, respectively syzygetic or azygetic with
the given one. Thus. when the space sextic is determined by a Steiner
cubic and the quadric I it acquires a node in one of two ways-either I
touches the Steiner surface or I passes through a node of the Steiner sur-
face.

In the case where I touches the Steiner surface at the ordinary point p
the space sextic has a node at p. The octavic envelope in which I and the
Steiner quartic envelope meet also has the tangent plane at p for a double
plane with contact at p whence the ternary quartic C4 has a node at the
same point the WV-sextic has an extra node.

In the case where I passes through a node of the Steiner cubic the corre-
sponding line in the plane factors out and the W-sextic is a residual quintic
of genus 3 with simple points at the three vertices on this line and nodes
at the other three vertices. The curve C4 however has no singularity.
A third particular case which from a certain point of view is not a special

case of the W-sextic occurs when I is a quadric cone and the sets t, of
generators coincide. Here the web of conics in the plane no longer con-
sists of residual pencils but rather contains an isolated conic and a linearly
independent quadratic system of o 1 conics. If t is a parameter on the
isolated conic the quadratic system cuts this conic in a quadratic system
of quadruples determined by a general form (at)4(ar)2 = 0 with only 8
absolute constants and the locus of the vertices of the diagonal triangles
of these quadruples is the W-sextic. The curve 64 iS of hyperelliptic
type-the isolated conic doubly covered-with 8 branch points, (at)4-
(a 't)4(aa')2 = 0. A birationally equivalent form of this sextic is the
locus of the 9-th node of sextics with 8 given nodes-a 9-ic curve with
triple points at the 8 given nodes. When the 8 points are known this 9-
ic can be mapped upon the space sextic in such a way that all of the 120
tritangent planes are rationally known."3 This case is characterized by
the vanishing of an even theta function for the zero argument.
The fourth case-defined by the vanishing of the invariant A of section

11-occurs when the two space cubic curves of section 2 are rational
point and line cubic in the same plane. For the space sextic of genus 4
two generators t of I meet the sextic at points crossed by the same three
generators r. For the W-sextic the C4 iS generated, by two projective
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pencils of conics on coresidual quadruples in suclh a way that in the pro-
jectivity the three degenerate members of the two pencils correspond.

11 Abstracts I and II, these PROCEEDINGS, 7, 1921 (245, 334).
12 Coble, Trans. Amer. Math. Soc., 14, 1913 (261).
13 Coble, Trans. Amer. Math. Soc., 17, 1916 (358).
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The spectrographic velocity curves of several Cepheid variable stars,
and of a few other stars not yet definitely known to be variable, show
puzzling deviations from simple elliptical orbital motion. These devia-
tions have hitherto been explained by superposing upon a primary ellip-
tical velocity curve a secondary oscillation (generally circular) whose
period must be precisely one-half or one-third the period of the primary.
Such treatment has produced fairly good agreement with the observed
velocity data. There is, however, a similarity in the location of the nodes
of the primary and secondary curves which savors of artificiality. More-
over, it is very difficult, if not impossible, to devise reasonable and stable
multiple systems, or tidally distorted stars, which shall produce such
anomalies of one-half or one-third the period of the system.
My failure to construct a dynamically reasonable tidal or other model

giving such oscillations in an exact submultiple of the period has led me
to the attempt to represent the observational data by means of a purely
elliptical velocity curve, plus a single oscillation or "hump." This new
method of treatment is of considerable interest and, if substantiated by
future more accurate spectrographic data, will have an important bearing
upon some of the many theories of Cepheid variation, the most puzzling
feature of which, as is well known, is the essential synchronism of maxi-
mum light with maximum velocity of approach.

Limitations of space make it impossible to give in this paper the curves
which have been derived for these stars under the hypothesis of secon-
daries of a submultiple of the period; these curves will be found in the
original papers, references to which are given at the close. In cuts I-VI,
shown in Figures 1 and 2, the original spectrographic velocities are plotted
without change as given by the respective observers, the dots representing
three-prism results, and the open circles those derived from one-prism

Voi. 9, 192 187


